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Abstract

I recover risk-neutralized covariance matrices of currency returns and combine them

with ex post realized covariance matrices to study FX variance risk. I start by per-

forming eigendecomposition of daily matrix differences and document three general

findings: evidence for an overall negative FX variance risk premium; a special place

for the US dollar index and Carry trade as the two portfolios with the most negative

premium; existence of strategies with a significantly positive premium. On average,

portfolios of negative spot return momentum and high recently realized variance are

associated with a higher price of own variance risk. I find that the Carry trade variance

risk dominates the US dollar variance risk as a priced factor, contributing to resolu-

tion of the differential pricing of “good and bad” carry portfolios. Finally, I show that

hedging shocks to news about future FX variance is costly with a horizon-decaying

pattern, similar to what is observed on the equity market. However, the costs do not

become statistically or economically insignificant even at the longest horizons, sug-

gesting a strong preference of FX market investors to hedge such shocks. My findings

are thus relevant for FX risk management and theoretical asset pricing.
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1 Introduction

Stochastic variance is considered with little disagreement an inherent feature of financial

asset dynamics and a major source of risk for investors. The associated variance risk pre-

mium – the average payoff of an asset that is perfectly correlated with a variance process

– is a phenomenon intuitive, backed by some of influential asset pricing models and em-

pirically observed. Research on this type of risk was pioneered and has been shaped by

its equity market strand, such that several important findings remain endemic to the lat-

ter. The FX market strand, which is where my paper belongs, has not only received less

attention, but also failed to incorporate staple asset pricing factors and investment vehi-

cles such as the Carry trade into the set of research objects, concentrating instead on USD

currency pairs. That said, my work aims to align the two strands by replicating several

results from the equity market in the FX market setting, and studying FX market variance

risk from the perspective of currency portfolios.

Similar to Carr and Wu (2009), I perform my analysis through the lens of synthetic vari-

ance swaps. A variance swap is a contract that pays its buyer an amount equal to the re-

alized variance of a return series in exchange for a predetermined swap rate; the variance

risk premium is conveniently defined as the expectation of this net payoff. The notion

of “synthetic” means the swaps I am talking about are not actually traded contracts as

in Aı̈t-Sahalia et al. (2018) and Dew-Becker et al. (2017), but rather no-arbitrage replicas

thereof: under certain assumptions, the swap rate can be approximated by the model-free

implied variance of the swap underlying, which in turn can be recovered from a cross-

section of option prices. I follow Mueller et al. (2017) to recover such variances for all

cross-rates of currencies in my sample and construct option-implied covariance matrices of

currency returns, from which implied variances of generic portfolios naturally follow.

That said, I present my findings as follows. First, I show that the difference between ex
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post realized and option-implied covariance matrices is most of the time an indefinite,

occasionally a negative definite and never a positive definite matrix. This means that in

theory, strategies of both negative and positive variance swap payoffs are possible to con-

struct, and hence that it is hard to make a definite statement about the sign of “the” FX

market variance risk premium, although there is a stronger case for an overall negative

one. Interestingly, the two eigenvectors corresponding to the most negative eigenvalues

in the decomposition of the above matrix difference are aligned with the US dollar index

and the Carry trade portfolio respectively, implying that these two portfolios are associ-

ated with the most negative variance risk premium of all and thus cementing the special

place they have in the FX market fabric.

Second, I document that past spot return information influences conditional variance risk

premium in the cross-section and over time. To do so, I take a set of portfolios and regress

payoffs of swaps written on their variance onto a set of variables observed at swap in-

ception. I find that portfolios with negative momentum exhibit a more negative price

of variance risk, and hence are ceteris paribus relatively more expensive to insure against

variance increase. Portfolios with a high recently realized variance of returns behave in a

similar way, meaning that after periods of high realized variance, investors become more

variance risk-averse.

Third, I turn attention to staple FX portfolios and show that protection against higher

variance is priced for the Carry trade, Momentum, Value and the US dollar index – in

the sense that a buyer of a swap written on the variance of any of them expects to lose

money on average. These portfolios hold a special place in the FX market research. The

former three have been discovered as profitable trading strategies likely exposed to non-

diversifiable risks (Lustig et al. (2011), Asness et al. (2013), Menkhoff et al. (2011))1; the

US dollar index has been shown as an important driver of the time-series dynamics of

1These portfolio are also on the list of tracked FX indexes published by Deutsche Bank.
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currency returns (Verdelhan (2018)), and is clearly equivalent to the Dollar carry strategy

(Lustig et al. (2014)) in terms of conditional variance of returns. The variance risk pre-

mium is negative and similar in magnitude across strategies; for the US dollar index it is

comparable to the US equity market variance risk premium. Curiously, the Carry trade

strategy, much more volatile than the other FX strategies and notorious for crashes and

variance spikes, is far from being associated with the most negative or significant price of

own variance risk, dominated in that respect by the US dollar index and the Value strat-

egy in terms of statistical and economic significance respectively. That said, my findings

add to the puzzle reported by Caballero and Doyle (2012) and Jurek (2014) who note that

it has been strikingly cheap to hedge the Carry trade portfolio with FX options.

Fourth, motivated by my first set of results, I use the US dollar index and Carry trade

variance swap payoff series as risk factors in the linear asset pricing framework to show

that information in the former is subsumed by that in the latter. With the “good and bad”

carry trade portfolios of Bekaert and Panayotov (2018) for test assets, I find only the Carry

trade variance risk to be priced, the estimated price of risk being negative and close to the

sample average value of the factor, whereas the US dollar index variance risk price is

positive in some specifications and never significant.

Fifth and finally, I provide FX market-specific support for the equity market evidence that

shocks to news about future variance are priced the weaker the more distant the future is, as

if investors cared more about the next-period variance than about the variance expected

farther ahead. In asset pricing models with preference for early resolution of uncertainty,

and in macroeconomic models where shocks to variance expected tomorrow can lead

to higher variance today, investors are willing to pay for protection against shocks to

expected variance. Surprisingly, Dew-Becker et al. (2017) report that hedging shocks to

expected long-term US stock market variance has been remarkably cheap, the Sharpe

ratios of hedging strategies quickly going to zero and disappearing beyond the horizon
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of one quarter. To replicate their result in the FX market setting, I construct synthetic

forward variance claims and calculate payoffs from rolling these claims over for various

FX portfolios. I find that both payoffs and Sharpe ratios of rolling over forward claims

on future quarterly variance tend to diminish with horizon. However, the decline is not

as steep as on the equity market, and even for hedging shocks to the variance 4 quarters

from now, the costs are statistically different from zero, and Sharpe ratios – comparable

to those of the portfolio excess returns themselves. I also zoom in on the shortest segment

of 1-4 months and discover a more or less flat term structure of shocks to future variance

prices and respective Sharpe ratios. Overall, my findings point to a stronger desire of FX

market investors to hedge shocks to long-term variance.

My work belongs to and draws from the relatively young literature on the FX market vari-

ance risk as a subset of the variance risk research in general. Negative price of variance

risk has been previously documented for the US aggregate stock market (Carr and Wu

(2009), Bollerslev et al. (2009)), non-US aggregate stock markets (Bollerslev et al. (2014)),

US Treasury bonds (Choi et al. (2017)) and commodities (Tee and Ting (2017)). Della Corte

et al. (2016) present a first evidence of the variance risk premium on the FX market by con-

structing a dollar-neutral portfolio of currencies sorted on a crude measure of conditional

variance risk premium. Over-weighting (under-weighting) currencies with high (low)

premium, the authors construct a strategy that enhances the mean-variance investment

opportunities on the FX market. Ammann and Buesser (2013) find further support for

negative variance risk premium in individual exchange rates. However, variance risk of

FX portfolios such as the Carry trade and the US dollar index has not received similar

attention.

Since variance of a portfolio is a quadratic form of the covariance matrix of portfolio con-

stituents and portfolio weights, I first develop vector representation of currency trading

strategies. Then, I recover risk-neutralized covariance matrices of currency returns by
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making use of the concept of model-free implied variance developed by Britten-Jones

and Neuberger (2000) and Carr and Wu (2009) and the assumption of no triangular ar-

bitrage. A similar exercise has been undertaken before. Walter and Lopez (2000) and

Mueller et al. (2017) construct option-implied correlations between appreciation rates of

currencies against the US dollar: the former paper criticizes the minuscule information

content thereof, while the latter explores the properties of a trading strategy that is long

(short) currencies with the highest (lowest) loading on the measure of FX correlation risk.

My work differs from these studies both in research questions and methodology: namely,

the covariances and correlations are never the center of my research, but rather a tool to

calculate portfolio variances.2 Relatedly, Jurek (2014) constructs the analogue of VIX for

the carry trade portfolio, but only uses it to highlight the GARCH-in-mean effect in carry

trade returns.

The rest of the paper is structured as follows. Section 2 describes the data I use and

outlines the vector representation of currency trading strategies, discusses recovery of

the option-implied covariances and construction of the variance risk premium estimates.

Sections 3 and 4 present the findings. Section 5 concludes.

2 Data and methodology

2.1 Notation

By default, I treat currencies as assets from the point of view of an American investor,

such that exchange rate Sx is the dollar “price” of currency x and could be referred to by

quote XXXUSD if the three-letter ISO code of currency x is XXX. All τ-period “returns”

2One clear advantage of this is while the payoff of a variance swap can at least in theory be replicated
with a portfolio of options (see Carr and Madan (1998)), no such replication is possible for individual
correlations, which might impact their information content and can serve as the resolution of the critique
of Walter and Lopez (2000). I thank Peter Carr for this observation.
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defined as Rx(t, t + τ) = Sx(t + τ)/Sx(t) are thus by default appreciation rates against

USD.

When explicitly written with a double subscript Sxy, exchange rate against currency y is

meant rather than against the US dollar, which can be thought of as “price” of currency x

expressed in units of currency y, and “return” is then the appreciation rate of currency x

against y.

In what follows, sx = log Sx, such that the log-return of currency x is defined as:

rx(t, t + τ) = ∆sx(t + τ) = sx(t + τ)− sx(t). (1)

2.2 Data

I use FX option data from Bloomberg. In the next few paragraphs, I only present the

basic facts about FX option data; a comprehensive introduction into the FX option market

conventions is given in Wystup (2007) and Malz (2014).

Prices of FX options tend to be expressed in terms of the option Black-Scholes implied

volatility (IV). This does not assume that the Black and Scholes (1973) model is under-

stood to hold, but rather represents a one-to-one continuous mapping from the space of

currency-denominated option prices to the space of unitless volatility, which allows for

easier comparison between options of different strikes and maturities. Bloomberg pro-

vides implied volatility quotes against forward deltas (δ) rather than against strike prices,

the forward delta3 being the derivative of the Black-Scholes pricing function with respect

to the forward rate of the underlying. Henceforth, delta is understood to be the forward

delta. Just as implied volatility is a mapping from the option price, delta is a mapping

from the strike price. As deltas are bounded between 0 and 1 in magnitude, they are

3As provided by Bloomberg, delta is net of currency premium.
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usually multiplied by 100 for quotation purposes to become numbers such as 25, 15 etc.

The most liquid part of the FX option market is concentrated in at-the-money options

(ATM) and option contracts, of which Bloomberg provides risk reversals (RR) and butter-

fly spreads (BF). The notion of at-the-money in Bloomberg is the so-called “delta parity”,

implying that a call option is at-the-money if it and an otherwise identical put option

have the same absolute delta. The other two instruments are linear combinations of plain

vanilla call and put options: risk reversals give the holder exposure to the skewness, and

butterfly spreads – to the volatility of the underlying exchange rates. That said, for any

given day, there are implied volatilities of 10-, 15-, 25- and 35-delta contracts of both types

as well as of one ATM option provided by Bloomberg, a total of nine quotes4. These are

indicative quotes, collected by the data vendor from its suppliers at a particular time of

day (usually right after closing of exchanges in the ET time zone) and are snapped at 17:00

New York time. The contracts are conveniently structured to be of constant maturity of 1,

2, 3, 4, 6, 9, 12 months.

As the risk reversals and butterfly spreads are linear combinations of put (P) and call (C)

options, it is possible to solve for two call option IVs given the IVs of both contracts and

of the ATM. The only necessary assumption is that of no arbitrage (including the put-call

parity relation). For example, as shown in Malz (2014):

σ(C(δ)) = σ(ATM(δ)) + σ(BF(δ)) + 0.5σ(RR(δ)), (2)

σ(C(1− δ)) = σ(ATM(δ)) + σ(BF(δ))− 0.5σ(RR(δ)) (3)

where σ(Y(δ)) is the IV of contract of type Y ∈ {ATM, BF, RR, C, P} having delta δ.

Omitted are the maturity of the contracts and the time subscripts required to be the same

for all contracts in the above equations. As discussed in Reiswich and Wystup (2009), (2)-

4Sometimes certain quotes would be missing on a given day; most often these are the less liquid 10-
and 35-delta ones.
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(3) is only valid for small risk reversal implied volatilities. Still, it offers a handy, widely

used relation, does not rely on a parametric form proposed in that paper and thus does

not conflict with the cubic spline volatility smile interpolation I use later.

That said, it is possible to obtain 2N + 1 distinct (δ, σ) points from N (RR, BF) quotes

and one ATM quote, from where it is straightforward to get to price-strike pairs (C, K) as

shown in Wystup (2007). The data other than option quotes needed for the calculations is

also collected from Bloomberg. Specifically, for every currency pair I collect the spot ex-

change rate, and – for each considered maturity – the forward rate rate and two OIS rates

as proxy for the risk-free rates. I substitute the risk-free rate of the less traded currency

with a synthetic risk-free rate obtained from the covered interest parity (CIP), whereby

the ranking is by turnover of OTC foreign exchange instruments reported in BIS (2016).

For instance, in the case of AUDCHF, the true Australian dollar OIS rate will be taken and

used to infer the Swiss franc risk-free rate, although the OIS rate for the latter currency is

also available.

For construction of portfolio spot and excess returns, I use the same spot and forward

rates from Bloomberg. The PPP data used for construction of the Value signal is from

OECD.

My sample of currencies includes the Australian and Canadian dollar, Swiss franc, euro,

British pound, Japanese yen, New Zealand and US dollar; the sample period is from

06/2009 to 12/2017.

Local-economy stock indexes used for construction of equity variance swap rates are ob-

tained from websites of local stock exchanges: for Australia S&P/ASX 300, for Canada

S&P/TSX Composite, for Switzerland SMI, for the Eurozone Euro STOXX, for the UK FTSE

100, for Japan NIKKEI 225, and for the US S&P500. Respective VIX-like indexes (usually

referring to the same basket of stocks that the index is comprised by) are from Bloomberg.
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As there is no VIX-like index for the New Zealand market, I exclude this country from cal-

culations where both the stock and FX variance risk premium is considered.

2.3 Variance swap returns and variance risk premium

Imagine an investor at time t wishing to receive a payoff equal to the variance

Vart+τ(r(t, t + τ)) of a return over some time interval (t, t + τ). Two problems arise:

first, since the variance is a latent characteristic of the return process, it is not observed

and has to be estimated from data at time t + τ to be paid out; second, the fair price of

this payoff at time t has to be determined.

As a solution to the first problem, Corollary 1 in Andersen et al. (2003) equates5 the condi-

tional variance of an arbitrage-free process to the conditional expectation of its quadratic

variation. Assume that exchange rate S follows an arbitrage-free process {S(t)}, and let

s(t) = log S(t) as before, such that the continuously compounded appreciation rate is

r(t) = ds(t) = lim
∆t→0

s(t + ∆t)− s(t). (4)

The quadratic variation accumulated from time t to time t + τ is defined as:

[r, r]t,t+τ =
∫ t+τ

t
(ds(k))2, (5)

and is closely related to the variance of the process:

Vart(r(t, t + τ)) = Et([r, r]t,t+τ) = Et

(∫ t+τ

t
(ds(k))2

)
, (6)

The same Corollary suggests that a natural ex post estimator of the variance on the left-

hand side of eq. (5) – the quantity the investor expects to receive – is the discretized

5Under certain yet not implausible assumptions discussed therein.

10



version of the right-hand side6:

Vart+τ(r(t, t + τ)) =
254
Dτ

Dτ

∑
d=1

r
(

t +
d− 1

Dτ
, t +

d
Dτ

)2

= RV(t, t + τ), (7)

where t + d/Dτ denotes day d of time interval (t, t + τ), Dτ is the total number of days

in that interval, and 254 is the annualisation factor approximately equal to the number of

trading days in a year. This quantity is also called the realized variance, hence mnemonic

RV. Eq. (7) assumes that daily returns have zero mean: although this seems restric-

tive and arguably more suitable at frequencies higher than daily, average currency spot

returns are notoriously indistinguishable from zero (cf. Lustig et al. (2011)), such that

slightly biased but lower-variance estimators of type (7) have been favored in related

econometric literature.

The fair price to swap the quantity in eq. (5) for (such that no money changes hands at

time t) is by the standard argument its risk-neutralized expectation:

IVt(τ) = EQ
t

(∫ t+τ

t
(ds(k))2

)
, (8)

also called the variance swap rate. Mnemonic IV has to do with the fact that this rate is

essentially the model-free implied variance of the log-price process {s(t)}. Britten-Jones

and Neuberger (2000), building on the results of Carr and Madan (1998) and Breeden and

Litzenberger (1978), equate7 the conditional Q-expectation of the accumulated quadratic

variation to the price of a continuous portfolio of options expiring in (t + τ), weighted by

strikes:

EQ
t

(∫ t+1

t
(ds(k)2

)
= 2

∫ ∞

0

Ct(τ, X)− (S(t)− X)+

X2 dX, (9)

where Ct(τ, X) is the time-t price of a call option on S with strike X and maturity of τ,

6Estimators of this type are commonly used, see for instance Moreira and Muir (2017), Trolle and
Schwartz (2010) and for daily observed FX returns Della Corte et al. (2016).

7Under assumptions that were relaxed by Jiang and Tian (2005) to include jump-diffusion processes.
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and (v)+ = max(v, 0). The integral in eq. (9) can be evaluated numerically, but a careful

inspection reveals two potential sources of errors in doing so: first, while the integration

in eq. (9) is from zero to infinity, options are traded over a much narrower range, and

second, even in that range, strikes are far from being sampled continuously. Addressing

these issues, I follow the literature and take the usual steps8, which are graphically rep-

resented in Figure 1. First, as shown by the hollow dots, the observed option prices are

transformed into the Black-Scholes implied volatilities to obtain a volatility smile. Then,

as shown by the solid line, the smile is interpolated within the available strike range using

a cubic spline. Third, as shown by the dashed line, the smile is extrapolated by keeping it

constant at the level of the endpoints. Finally, the Black-Scholes volatilities are converted

back into prices. For the estimations, I use a grid of 2000 points over the moneyness range

between 2/3 and 5/3, and the Simpson’s rule to perform the integration.9

[Figure 1 about here.]

That said, in form of a variance swap the investor purchases protection against rising

variance, the time-(t + τ) return amounting to:

vs(t, t + τ) = RV(t, t + τ)− IVt(τ), (10)

where RV(t, t + τ) is the realized variance over time interval (t, t + τ), and IVt(τ) is the

model-free implied variance observed from a cross-section of options at time t.

The variance risk premium is defined as the expected value of the variance swap return

8The same approach, if not without slight variations, has been used by Jiang and Tian (2005), Driessen
et al. (2009), Buraschi et al. (2014), Della Corte et al. (2016) and many others.

9Another way to arrive at an estimate of a risk-neutral moment would be through calibration of a para-
metric density to the set of observed option prices, from which calculation of moments is straightforward
(see Mirkov et al. (2016) for an example). I have ascertained that deviating from the model-free approach
towards a parametric one does not lead to much different variance estimates.
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in (10):

vrpt(τ) = Et (vs(t, t + τ)) = Et (RV(t, t + τ))− IVt(τ), (11)

Thus, it is the difference between the objective and risk-neutral expectation of the future

realized variance of a stochastic return: if the difference is negative for some asset, in-

vestors are ready to pay for hendging the return variance of that asset.

2.4 Vector representation of currency trading strategies

Absence of triangular arbitrage allows to represent any currency position or trading strat-

egy in a vector form, using only exchange rates against one common currency. A vector

representation is necessary for computation of moments of trading strategy returns.

I define an N-currency portfolio as a zero-leverage10 dynamic trading strategy, rebalanced

monthly and represented with a vector of weights (w1,t, w2,t, . . . , wN,t)
′ known at the end

of the previous month. For instance, any position involving the euro, the Australian and

US dollar can be represented with a 2× 1 vector (waud, weur)′ of weights of AUDUSD and

EURUSD. The strategy of having 40% of the portfolio in long AUDUSD and 60% in long

EURUSD is defined as (0.4, 0.6)′, and the weights have to sum up to 1 in absolute value

for the zero leverage constraint to bind. The strategy of having 40% in short AUD and

60% in short EUR is represented as (−0.4,−0.6)′, the weights again summing up to 1 in

absolute value. Now, having 100% in long AUD and 100% in short EUR, represented as

(1.0,−1.0)′ would also be a valid zero-leverage portfolio, as it is tantamount to be 100%

long AUDEUR. In the latter case, the weights do not sum up to 1, but rather the short

leg and the long leg do so separately. With that in mind, a currency portfolio must be a

10On the ForEx, it would mean that having $1 in the margin account it is only possible to open $1 worth
of positions.
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process {vt+1} of the form:

vt+1 = (w1,t, w2,t, . . . , wn,t)
′, (12)

Et[vt+1] = vt+1, (13)

N

∑
n=1
|wi,t|+

∣∣∣∣∣ N

∑
n=1

wi,t

∣∣∣∣∣ = 2, (14)

where eq. (13) says that the composition of the portfolio at time t+1 is known at time t.

The constraint in (14) can be graphically summarized in Figure 2 for the example with

AUDUSD and EURUSD: all combinations on the solid rhombus are valid (waud, weur)

portfolios. Section 2.6 contains examples of popular trading strategies in vector represen-

tation.

[Figure 2 about here.]

To stress that the time-(t+1) portfolio composition is known at time t, I introduce

wt = Et[vt+1] = (w1,t+1, w2,t+1, . . . , wN,t+1)
′. Also, I denote the time-(t+1) return of any

strategy as ft+1 to differentiate it from individual currency returns. This return is calcu-

lated in the usual way:

ft+1 = w′trt+1, (15)

where r = (r1, r2, . . . , rn)′ is the vector of individual currency returns. The conditional

variance of the strategy return is:

Vart( ft+1) = w′tΩtwt, (16)

where Ωt is the conditional covariance matrix of currency returns against the US dollar

or any other currency.
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2.5 Covariance matrices of currency returns

The cornerstone of this paper is the conditional covariance matrix of time-(t+ τ) currency

appreciation rates against a common counter currency, whereby the conditioning is w.r.t.

the time-t information. Indexing the rows and columns of any such matrix with the base

currencies, its (x, y) element reads:

Ωt[x, y] =


Vart(rx(t, t + τ)), x = y,

Covt
(
rx(t, t + τ), ry(t, t + τ)

)
, x 6= y

Absence of triangular arbitrage implies that the log-appreciation rate of currency x

against y can be expressed in terms of their log-appreciation rates against a common cur-

rency (time subscripts can be dropped as long as returns are contemporaneous):

rxy = rx − ry. (17)

Applying the variance operator to both sides of eq. (17) results in:

Var(rxy) = Var(rx) + Var(ry)− 2Cov(rx, ry),

which can be rearranged to isolate the covariance as follows:

Cov(rx, ry) =
1
2
(Var(rx) + Var(ry)−Var(rxy)). (18)

The latter equation obviously holds irrespective of the time subscripts, of the set of infor-

mation used for conditioning the moments, and of the measure under which the moments

are taken. Thus, to obtain the covariance between returns of x and y one needs the vari-

ance of the appreciation rate of x against y as well as of each of them against a common

currency.
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2.6 Currency portfolios

2.6.1 US dollar index, USD

A return of a currency index is defined as an equally weighted average appreciation rate

of foreign currencies against that particular currency: when the index goes up, the cur-

rency depreciates to the basket of other currencies. For each currency, the composition of

this portfolio is the same after each rebalancing, e.g. for the US dollar:

aud cad chf eur gbp jpy nzd

1/7 1/7 1/7 1/7 1/7 1/7 1/7

2.6.2 Carry trade, CAR

As in Lustig et al. (2011), currencies are sorted by how much risk-free interest rates in

respective economies exceed that in the US. Long positions are opened in the two cur-

rencies with the highest, and short position – in the two with the lowest such difference.

Instead of taking any particular type of risk-free rate, I rely on the covered interest parity

and proxy the above interest rate difference as the negative of the currency’s forward dis-

count, smoothing the series over 3 months to avoid FX market microstructure effects.11 A

common representation of the carry trade strategy is as follows:

aud cad chf eur gbp jpy nzd

0.5 0 −0.5 0 0 −0.5 0.5

11See Baba and Packer (2009) and Du et al. (2018) for a recent discussion on the parity deviations during
the financial crisis.
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2.6.3 Momentum, MOM

As in Asness et al. (2013), currencies are sorted by their cumulative appreciation against

the US dollar over the past 12 months excluding the most recent month. Long positions

are opened in the two currencies that have appreciated the most, and short positions – in

those that have appreciated the least.

2.6.4 Value, VAL

As in Della Corte et al. (2016), currencies are sorted by their real exchange rate against

the US dollar. Long positions are opened in the two currencies with the lowest, and short

positions – in those with the highest real exchange rate. The real exchange rate is defined

as REERt = PPPt/St, where PPPt is the purchasing power parity rate from OECD data,

and St is the nominal exchange rate.

2.6.5 Variance risk premium, VRP

As in Della Corte et al. (2016), currencies are sorted by a proxy of the time-t variance risk

premium for holding that currency against USD. The premium is proxied as the difference

between the realized in the previous year and the 1-year model-free implied variance of

the currency appreciation rate against the US dollar. Long positions are opened in two

currencies with the largest, and short – in those with the lowest such difference.
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3 General results about FX variance risk

3.1 Extreme attainable variance risk premia

Access to both realized and implied covariance matrices makes it possible to determine

which portfolios are associated with a consistently negative variance risk premium, and

which – if any at all – with a positive one. The exercise can be restated as an eigenvalue

problem.

As mentioned in Section 2.3 (specifically, eq. (11)), variance risk premium of a portfolio

is equal to the expectation of the payoff of a swap written on the portfolio’s variance.

The payoff equation trivially involves quadratic forms defined by the objective and risk-

neutralized covariance matrices:

vs(t, t + τ) = w′iΩ
P(t, t + τ)wi − w′iΩ

Q
t (τ)wi (19)

= w′i
(

ΩP(t, t + τ)−ΩQ
t (τ)

)
︸ ︷︷ ︸

Θ(t,t+τ)

wi, (20)

where wi is a vector of portfolio weights, and Θ, which I call variance swap payoff structure

matrix, is introduced to denote the difference in question. Period-by-period, a condition

necessary and sufficient to make any quadratic form defined by this matrix negative (pos-

itive), Θ must be negative (positive) definite, which it would if all of its eigenvalues are

less (greater) than zero. Hence, I calculate the time series of eigenvalues of the realized

Θ(t, t + τ). I find that the proportion of days when only a negative variance swap payoff

could have been realized, rises from 0.01 at the 1-month to 0.15 at the 4-month horizon,

whereas the proportion of days with only a positive payoff being possible is exactly zero

irrespective of the horizon. This speaks in favor of an overall negative FX variance risk

premium, but is also clearly indicative of a theoretical possibility to construct portfolios
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with a positive one.

By construction, eigenvalues of Θ are equivalent to variance swap payoffs for portfolios

formed with corresponding eigenvectors as weights. Since Θ is Hermitian, the lowest

(highest) value is paired with the vector that minimizes (maximizes) the quadratic form in

eq. (20) under the condition that vector elements sum up to one when squared.12 For the

3-month horizon only, Figure 3 presents the time series average of the eigenvalues ranked

from the lowest to highest, as well as the corresponding eigenvectors. There is strong

evidence that a broad range of average payoffs have been possible, from very negative for

portfolio 1 to positive for portfolio 7. Interestingly, portfolio 1 – associated with the lowest

eigenvalues – is essentially the US Dollar index, as the weights of different currencies

are all similar in magnitude and sign and identified precisely. Portfolio 2 is reminiscent

of a typical carry trade, separating the Australian, New Zealand and Canadian dollar

from the Japanese yen, Swiss franc and euro, which are the high and low interest rate

currencies respectively. This further stresses the special role the US dollar index and the

Carry portfolio play on the FX market. At the same time, portfolio 7 – the one associated

with the highest eigenvalues – turns out to exhibit a consistently positive variance risk

premium, suggesting a possibility of constructing such a .

[Figure 3 about here.]

Mostly identical results emerge when realized covariance entering the computation of

variance swap payoff structure matrices is substituted with expected covariance, proxied

by past realized covariance in the spirit of many previous variance risk premium stud-

ies.13 The ex ante variance risk premium in this case is similarly negative (positive) for

portfolios corresponding to the lowest (highest) eigenvalues, the time-series average of

12That said, the portfolios obtained from such eigendecomposition are leveraged.
13See, for example, Bollerslev et al. (2009), Della Corte et al. (2016), Zhou (2017) and others.
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the first two eigenvectors again mimicking the US dollar index and a typical carry trade

portfolio.

3.2 Explaining variance risk premium of FX strategies

Given the observed heterogeneity in variance risk premium estimates, a naturally arising

question is whether the conditional variance risk premium is explainable by character-

istics. This question translates to estimation of the coefficients β in the following panel

relation:

w′iΘ(t, t + τ)wi = β′iXi,t + εi,t, (21)

where the left-hand side is the variance swap payoff of portfolio i reaped at time t + τ, Θ

and wi are as defined in eq. (20), and Xi is a vector of portfolio characteristics. I choose

Xi to comprise the portfolio average interest rate difference (weighted by wi), momentum

signal (return of portfolio i in the previous year without the most recent month), value

signal (weighted average of the logarithms of individual value signals as in Section 2.6)

and the recently realized variance (average squared return over the 5 days leading to t).

Since there are infinitely many portfolios characterized by weights wi to estimate eq. (21),

I only concentrate on the subset of seven portfolios constructed from rescaled eigenvec-

tors in Figure 3. The choice is admittedly arbitrary, but as I describe earlier, the portfolios

therein include a version of the US dollar index, a static carry trade portfolio etc., thus

offering a representative range of test assets. For this exercise, I use the 3-month variance

risk premium estimates as the most statistically significant ones. As for the estimator, I

choose panel OLS with time fixed effects and the Fama-MacBeth procedure. Addition-

ally, I control for entity fixed effects in a separate specification. Within the panel OLS

framework, time fixed effects are needed to pinpoint the sources of cross-sectional vari-

ation in risk premium estimates, and the entity fixed effects would allow to zoom in on
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the sources of time series variation over and above a common trend. The Fama-MacBeth

estimator is used as a robustness check.

The results are presented in Table 1. Overall, it is the backward-looking spot return infor-

mation that is a significant determinant of cross-sectional differences in FX variance risk

premium estimates and a driver of conditional risk premium dynamics. Portfolios that

have enjoyed positive spot return over the previous incomplete year tend to be cheaper

to buy variance protection for, as evidenced by the positive and significant coefficient,

robust across all estimators. Each extra percentage point of positive return translates ce-

teris paribus to 50-100%% of extra positive difference between the realized and implied

variance. Equally significant and robust is the effect of higher recently realized variance:

every extra squared percentage point thereof is associated with the variance risk premium

becoming more negative by 1-2%%.

As to the other variables, the relation is either not significant, or not robust, or both.

Portfolios with a relatively higher forward discount tend to exhibit slightly more positive

variance risk premium, although the effect is reversed in the time dimension and barely

detectable with the Fama-MacBeth estimator. Portfolios of currencies that are “cheap” in

real terms are expected to have a more negative variance risk premium when judged by

the panel OLS coefficients, but this is at stark odds with the Fama-MacBeth estimation

results.

[Table 1 about here.]
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4 Variance risk of popular FX trading strategies

4.1 Time series of FX strategies’ variance swap payoffs

Next, I turn to documenting the variance risk premium estimates for a number of popular

FX portfolios. As discussed in Section 2.3 (specifically, see eq. (11)), the unconditional

premium can be expressed as the unconditional mean of variance swap payoffs, or as the

difference between the average realized and implied variance.

Figure 4A shows (the square root of) the average realized and implied variance of portfo-

lio returns for horizons of 1 to 4 months. Not surprisingly, the carry trade strategy is the

most volatile of all, both in terms of the average realized and average implied variance,

at all horizons, while the US dollar index is the least volatile. A restatement of the previ-

ously reported result from Section 3.1, the Carry trade is not the most expensive strategy

to hedge the variance risk of, as Figure 4B suggests: its unconditional variance risk pre-

mium is either exceeded or matched in magnitude by that of the Value strategy, and both

fall short of the US dollar index in terms of the Sharpe ratio of variance swap payoffs. This

appears puzzling, given the reputation of the Carry trade as a strategy prone to crashes

and volatility spikes much more than the other considered portfolios, and resembles the

findings of Jurek (2014) who documents that hedging its downside with FX options in-

creases the performance dramatically, as if the options on the carry-related cross-rates

such as AUDJPY were “too cheap”.

[Figure 4 about here.]

Table 2 suggests a possible venue for reconciliation of the puzzle: the time series aver-

age values of variance swap payoffs are pushed upwards by infrequent large positive

observations. The median values on the other hand are uniformly twice as negative for
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the Carry as for the other strategies. Admittedly, these facts distort the analysis some-

what, but not dramatically: even at twice as higher a Sharpe ratio, the carry trade vari-

ance swap payoffs would only come close to resemble the US dollar index in terms of

variance-riskiness.

[Table 2 about here.]

FX variance risk premium is dwarfed by that of local stock market returns across the

economies in my sample, as Figure 5 indicates. Therein, I plot average local stock market

variance swap returns and Sharpe ratios against the corresponding currency index values.

A currency index is defined for different counter currencies similar to the US dollar index.

A variance swap return is defined by scaling the variance swap payoff by the inverse of

the swap rate, not dissimilar from return on a fully collateralized swap position:

vs(t, t + τ) =
RV(t, t + τ)− IVt(τ)

IVt(τ)
× 100× 12

τ
, (22)

For this exercise, swap returns are preferred to payoffs because stock markets are on av-

erage much more volatile than the FX market, which would distort the cross-market com-

parison. At the 1-month horizon depicted in the Figure, FX variance swap returns and

respective Sharpe ratios are twice as small as their equity market counterparts.

[Figure 5 about here.]

4.2 Asset pricing with variance risk

Given that the US dollar index and Carry trade strategy have been documented to play an

important role in FX asset pricing (see e.g. Lustig et al. (2011) and Verdelhan (2018)), and
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taking into account my previously reported findings, namely coincidence of their compo-

sition with principal component loadings, as well as significance of respective variance

risk premium estimates – it is of interest to test the corresponding sources of variance risk

for cross-sectional asset pricing properties. To do so, I use a linear asset pricing frame-

work and a range of “good and bad” carry trade portfolios constructed as in Bekaert

and Panayotov (2018). Each such portfolio represents a carry trade set up on a narrower

subsample of G10 currencies14. Bekaert and Panayotov (2018) show that these portfo-

lios differ a lot in terms of profitability and distribution characteristics, and as such they

provide a fruitful soil for testing asset pricing models.15

The model I estimate assumes that the stochastic discount factor of a representative in-

vestor linearly depends – among other things – on the US dollar and Carry trade variance

swap payoffs, which leads to the following representation of the expected return of port-

folio i:16

E[rxi(t, t + τ)] = βi(τ)
′λ(τ), (23)

where rxi is the excess return of the portfolio, λ is a vector of risk premia (“prices of risk”),

and βi is the vector of portfolio loadings on the risk factor (“quantities of risk”), which I

allow to differ by horizon τ. Hence, the model implies that the cross-sectional differences

in expected portfolio returns arise due to differences in their loadings on the risk factors,

since the prices of risk are the same for each portfolio. For the risk factors, I take the

US dollar index and Carry trade returns as in Lustig et al. (2011), together referred to as

benchmark factors, and the two corresponding variance swap payoffs, together referred to

as variance risk factors. I estimate the model in the two-step way as has become staple

14Here, in test assets construction I use the whole G10 sample, including the Danish and Norwegian
krone and the Swedish krona for the portfolio construction. The US dollar index and Carry variance swap
payoffs are constructed without these currencies, as before.

15Clearly, many of these portfolios have returns that are either not linearly independent of return of the
other portfolios, or almost perfectly correlated with any other series, a nuisance exacerbated by the small
sample size. After ensuring that the matrix of test asset returns has full column rank, I am left with 32
portfolios with the average pairwise return correlation of 0.6.

16For details, see Munk (2013)
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in asset pricing with non-traded factors: the loadings are estimated in the first step, and

then used to pin down the risk premia. Although the above four factors are theoretically

traded (the benchmark ones clearly so, while the variance risk ones are such by analogy

with the stock market variance swaps and a no-arbitrage condition), Table 2 shows that

the time-series average payoffs as the estimates of the risk premium are rather imprecise,

especially at the one-month horizon. I will demonstrate however that both the sign and

the order of magnitude of the variance risk premium obtained in the second step are the

same as those of the sample averages.

Table 3 shows the estimates of the four prices of risk from linear regressions of 1- to 4-

month “good and bad” carry portfolios’ returns on the risk factors. The first model is

a standard specification with the returns of the broad US dollar index and the baseline

Carry trade strategy on the right-hand side. A repetition of an old result, expected returns

of the test assets are aligned with the exposures to the Carry, but not to the Dollar factor.

The second model describes returns as a function of the two variance risk factors, namely

the US dollar and Carry trade variance swap payoffs. There is clear evidence that only

the Carry trade variance risk is priced: the corresponding lambdas are significant, and

the price of risk estimates negative and of a similar magnitude as the sample values.

The US dollar index variance risk exposures are not meaningfully aligned with expected

returns, as the lambdas are economically minuscule and statistically indistinguishable

from zero. In the third model, which embraces both the benchmark and variance risk

factors, the price of the Carry trade variance risk becomes insignificant, dominated by the

ever significant Carry trade return factor, but the numerical value is barely unchanged;

the price of the US dollar index variance risk remains dwarfed by it. Noteworthy is the

fact that the drop in significance is less pronounced for horizon of 3 months, where the

variance risk premium is more precisely estimated in the first place.

[Table 3 about here.]
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4.3 Hedging shocks to future variance

Previously, Figure 4B presented evidence of a negative significant variance risk premium

in FX portfolio returns all the way up to the 4-month horizon, and suggested that it has

been historically costly for investors to hedge variance of FX trading strategies. In this

subsection, I answer a subtler question: do investors only care about hedging the shortest-

term (next month or next quarter) variance, or do they also price shocks to news about fu-

ture variance? In doing so, I closely follow the methodology and notation of Dew-Becker

et al. (2017) who conduct a similar analysis for the US equity market. I deviate from their

study in that I do not rely on interpolation of the term structure of forward variances,

but rather report the results for monthly variance at the horizon of up to 4 month and

for quarterly variance at longer horizons. Additionally – as everywhere throughout my

work – I do not rescale variance swap payoffs to arrive at variance swap returns, but

rather draw inference from time-series of the former.

To visualize the concept of shocks to future variance, consider a currency investor with a

three-period investment horizon. There are two types of variance shocks that she will be

exposed to in period 1: the first type are shocks to the variance in that period only, while

the second type are shocks to the expectation of variance in periods 2 and 3. As noted by

Dew-Becker et al. (2017), many established long-run risk models in finance (e.g. Bansal

and Yaron (2004), Drechsler and Yaron (2011)) and recent works on the macroeconomic

consequences of shocks to news about future uncertainty (e.g. Bloom (2009), Fernández-

Villaverde et al. (2011)) predict that investors are willing to hedge such news.

To test this implication, I calculate effective costs of hedging shocks to future τ-period

variance, τ = 2, 3, 4 months or quarters, whereby the hedging is performed by rolling

over forward variance claims. Given definition of variance in eqs. (6) and (8) and of

the discretized estimator thereof in eq. (7), it is straightforward to express the variance

26



realized solely in period τ as:

RV(τ, τ) = RV(t, t + τ)− RV(t, t + τ − 1). (24)

The price of this variance, or the period-τ forward variance claim price, follows trivially

from the risk-neutral pricing argument:

Ft(τ) = IVt(t + τ)− IVt(t + τ − 1). (25)

In other words, in period t it costs the investor Ft(τ) to buy forward the variance that

will be realized in period t + τ. Come period t + 1, she can sell forward that variance

(which would now be a contract expiring in τ − 1 months), and realize a gain if there

has been a positive shock to the expectation thereof. In order to maintain exposure to

variance shocks at the τ-period horizon, she would buy forward the t + τ + 1 variance

and then repeat the same steps, a succession familiar to futures market participants. A

significantly large time-series average of payoffs from this succession would indicate that

investors price shocks to variance at that particular horizon. By definition, period-1 for-

ward variance is just the implied variance at that horizon, and the corresponding rollover

payoff is simply the period-1 variance swap payoff.

Figure 6 shows the term structure of average forward monthly variance claims prices. For

all portfolios, the curves are strictly upward sloping suggesting negative returns from

the rollover strategy described above. Beyond the horizon of 1 month, the Carry trade

exhibits a larger curve slope than the other strategies (the curves of those appear of about

the same steepness), although at that horizon, the Value strategy and the Dollar index are

the steepest, a repetition of the previously stated fact about the 1-month variance swap

payoffs.

[Figure 6 about here.]
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Figures 7A-7B depict the payoffs and respective Sharpe ratios of rolling over forward

monthly variance claims at different horizons. All payoffs are negative, consistent with

the upward-sloping term structure of forward variance prices; most are statistically sig-

nificant, and Sharpe ratios are large for the US dollar index, Carry trade and Value strat-

egy. More importantly, except for the US Dollar index, rolling over FX forward variance

claims is as costly at the 4 months as it is at the 1 month horizon. Hence, it can be con-

cluded that investors are willing to pay a non-negligible price to hedge shocks to news

about variance at least within a popular rebalancing frequency17.

[Figure 7 about here.]

Figures 8A-8B show the outcome of the same exercise conducted on quarterly forward

variances at thresholds of 3, 6, 9 and 12 months: therein, F(τ) is the average payoff of

rolling over forward claims on the variance realized over (τ− 3 < t < τ), such that F(3m)

is again just the 3-month variance swap payoff. A somewhat different pattern emerges:

shocks to the nearest and second nearest quarter variance are priced much stronger than

shocks to more distant variance, as evidenced by declining payoffs and Sharpe ratios.

For all portfolios, the fourth nearest quarter values are twice as low in magnitude as the

second nearest quarter ones. However, most values are still statistically significant even

at the longest horizons, and Sharpe ratios are as high as the those of the strategy excess

returns.

[Figure 8 about here.]

Overall, there is evidence that investors care about shocks to news about future vari-

ance of FX portfolios, and despite the fact that these shocks are “cheaper” the farther the

17For instance, used in Deutsche Bank FX indexes.
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hedged variance, investors are still ready to enter transactions of return profile compa-

rable to trading strategies themselves to hedge event the shocks to news about the most

distant variance away. This finding stands in contrast with what Dew-Becker et al. (2017)

find for the US equity market: for a sample of US market variance swaps, the authors

report that shocks to uncertainty at horizons larger than one quarter could have been

hedged virtually for free.
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5 Conclusions

FX portfolios, such as the US dollar index and Carry trade, are at the heart of FX market

academic research and investment management, yet have been ignored by studies on

FX variance risk premium. In this paper, I aim to redress the balance by using option-

implied covariance matrices of currency returns and representing trading strategies in

vector form to construct synthetic swaps on the variance of these strategies and study FX

variance risk.

I find evidence of an overall negative FX variance risk premium, as the eigenvalues of

the matrix difference between the implied and subsequently realized covariances are pre-

dominantly negative. The US dollar index and a typical carry trade strategy appear as

the two portfolios with the most negative variance risk premium estimates of all possible

portfolios, further stressing the own special place on the FX market. At the same time,

strategies with a significantly positive ex post variance risk premium are achievable, up

to the limits of predictability of the realized covariance.

Cross-sectional and time-series differences in conditional variance risk premium esti-

mates can be explained by the past time-series information such as the spot return and

realized variance: portfolios of negative momentum and high recently realized variance

are on average the most expensive to insure against rising variance.

The Carry trade strategy, despite being the most volatile and crash-prone, does not stand

out as the one with the highest negative variance risk price, superseded in that respect

by the US Dollar index. Nevertheless, the Carry trade variance risk is an important factor

for explaining the cross-section of FX returns, just as the Carry trade excess returns are a

priced risk factor. The Carry trade variance risk is priced in the cross-section of “good and

bad” carry portfolios, contributing to the resolution of their differential pricing, whereas

the US dollar variance risk is not.
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Shocks to news about future variance on the FX market are priced, the price being the

smaller the more distant the expectation horizon. However, this decline is not as pro-

nounced as for the equity market, where Sharpe ratios of strategies providing insurance

against such shocks drop to zero beyond the horizon of 3 months. For FX portfolios, hedg-

ing shocks to news about future variance has been statistically and economically costly

even for longer horizons of 6, 9 and 12 months.
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Table 1: Explaining differences in variance risk premium estimates

(1) (2) (3)

estimator panel OLS panel OLS Fama-MacBeth

N obs. 17136 17136 17136
R2 0.08 0.07 0.09
R2 (within) 0.03 0.10 0.01
R2 (between) −0.39 0.31 0.97
R2 (overall) 0.00 0.11 0.09

forward discount 3.44 −3.65 1.05
(1.73) (−0.73) (0.47)

momentum signal 70.62 55.67 100.56
(3.72) (2.71) (2.92)

value signal −11.10 −41.69 44.63
(−0.45) (−1.46) (3.10)

recent RV −1.13 −1.12 −2.10
(−3.28) (−3.21) (−2.21)

time f.e. yes yes n/a
entity f.e. no yes n/a

This table shows estimates of coefficients in eq. (21) which relates subsequent 3-month
portfolio variance swap payoffs to portfolio characteristics observed at swap incep-
tion. Each column features a different estimator: in (1) panel OLS with time fixed
effects is used, in (2) – panel OLS with time and entity fixed effects, and in (3) – Fama-
MacBeth methodology. All variance-related variables are in percent-squared per year;
returns are in percent per year, and value signal is dimensionless. In parentheses be-
low coefficient estimates are respective t-statistics, calculated using Driscoll and Kraay
(1998) standard errors. The sample period is from 01/2009 to 06/2018.
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Table 2: Variance swap payoffs of for FX trading strategies: sample statistics

usd car val mom vrp

1 month
mean −10.65 −14.19 −20.64 −12.25 −8.00

(2.39) (9.18) (6.00) (5.37) (4.98)
sharpe −1.16 −0.52 −1.20 −0.68 −0.43
std 31.79 95.13 59.37 62.07 65.16
median −11.21 −18.82 −15.53 −11.82 −11.15
skewness 1.02 1.21 −2.14 1.05 3.11

2 months
mean −14.08 −23.89 −30.51 −18.75 −12.88

(3.41) (12.51) (19.11) (7.83) (5.64)
sharpe −1.24 −0.62 −0.63 −0.72 −0.53
std 27.70 94.35 119.13 63.58 59.13
median −12.67 −24.04 −12.36 −12.84 −14.80
skewness −0.23 0.42 −3.07 −1.33 1.93

3 months
mean −18.15 −33.05 −35.95 −22.69 −17.39

(4.51) (15.45) (22.73) (10.06) (6.34)
sharpe −1.26 −0.67 −0.61 −0.69 −0.63
std 28.83 98.05 118.72 65.56 54.95
median −15.12 −28.03 −14.18 −15.63 −16.48
skewness −0.49 −0.08 −2.94 −1.73 0.76

4 months
mean −21.99 −41.26 −40.80 −26.94 −22.87

(5.51) (17.65) (25.48) (11.99) (7.06)
sharpe −1.27 −0.72 −0.60 −0.69 −0.75
std 29.99 98.86 117.57 67.51 52.98
median −18.05 −35.73 −17.43 −18.80 −18.70
skewness −0.70 −0.38 −2.79 −1.81 −0.22

This table shows descriptive statistics of variance swap payoffs for a number of FX
trading strategies and holding horizons τ (in months). A payoff is defined as in eq.
(10), in percent-squared per year. Observations are daily and overlapping. Standard
errors of the mean, calculated with the Newey and West (1987) adjustment with the
number of lags set to 22 × τ are reported in parentheses below respective values.
Sharpe ratios are annualized. Definitions of the strategies as in Section 2.6. The sample
period is from 01/2009 to 06/2018.
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Table 3: Risk premium estimates in the cross-section of “good and bad” carry trades

(1) (2) (3) (1) (2) (3)

(A) 1 month (B) 2 months
rxCAR 7.33 7.37 6.66 6.79

(2.31) (2.37) (2.22) (2.33)
rxUSD −2.03 −1.87 2.12 −0.49

(−0.45) (−0.38) (0.37) (−0.09)
vspCAR −38.74 −36.00 −45.30 −39.09

(−2.09) (−0.78) (−2.39) (−1.29)
vspUSD 9.44 5.82 −0.50 0.29

(0.92) (0.67) (−0.04) (0.03)

(C) 3 months (D) 4 months
rxCAR 6.30 6.43 6.07 6.06

(2.14) (2.35) (2.10) (2.23)
rxUSD 1.51 −1.28 1.40 −0.14

(0.25) (−0.19) (0.23) (−0.02)
vspCAR −53.17 −48.29 −53.87 −37.89

(−2.27) (−1.58) (−2.07) (−1.15)
vspUSD −7.97 −6.21 −12.22 −7.97

(−0.46) (−0.46) (−0.65) (−0.55)

Each panel of this table shows risk premium estimates and respective t-statistics from a set of linear asset
pricing model. The models differ in terms of explanatory variables: in column (1), these are the US dollar
index and Carry trade returns, in column (2) – the corresponding variance swap payoffs, and in column
(3) – the four variables jointly. On the left-hand side are 1-, 2-, 3- and 4- month excess returns of the “good
and bad” carry trade portfolios as in Bekaert and Panayotov (2018), the horizon increasing from panel A
to D. Standard errors are calculated with the Newey and West (1987) adjustment (the number of lags set to
×22×horizon). Returns are in percent p.a., variance swap payoffs are in currency per $10000 notional. The
sample period is from 01/2009 to 06/2018.
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Figure 1: Preparing options data for integration
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This figure shows the basic steps of inter- and extrapolating the observed option prices, before attempting
the numerical integration of eq. (9). The hollow points correspond to the actually observed Black-Scholes
implied volatilities of plain vanilla call options. The solid line depicts the cubic spline fitted to these volatil-
ities to produce a smoothly interpolated smile. The smile is then extrapolated to the left and right of the
observed strike range by keeping the respective endpoint volatilities constant, as shown by the dashed
line. The example features call option prices extracted from the 10-, 15-, 25- and 35-delta risk reversals and
butterfly spreads as well as the at-the-money option on EURUSD on 01/17/2017.
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Figure 2: Portfolio constraints with AUDUSD and EURUSD.
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Figure 3: Eigendecomposition of variance swap payoff structure matrices
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This figure shows the times series average of eigenvectors (left heatmap) and corresponding eigenvalues
(right heatmap) calculated daily by performing eigendecomposition of the difference between two covari-
ance matrices: the one realized over a 3-month period and the model-free option-implied one, observed
at the start of the period (the observations of these matrix difference are thus daily and overlapping). The
eigenvectors can be thought of as weights of USD exchange rates in portfolios, and eigenvalues – as port-
folio variance swap payoffs. Values exceeding in magnitude 2× own standard error are marked with an
asterisk (*), whereby the errors are calculated with the Newey and West (1987) adjustment with the auto-
matic lag selection of Newey and West (1994). The colorbar to the right maps heatmap colors to numeric
values. The sample period is from 01/2009 to 06/2018.
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Figure 4: Variance and variance risk of FX trading strategies

(A): Realized and implied variance
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(B): Variance swap payoffs: averages
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(C): Variance swap payoffs: Sharpe ratios

usd car val mom vrp

1
2

3
4ho

ri
zo

n,
 in

 m
on

th
s -1.18* -0.51 -1.25* -0.69* -0.43

-1.26* -0.61 -0.63 -0.74* -0.54*

-1.27* -0.67* -0.61 -0.70* -0.63*

-1.27* -0.72* -0.60 -0.68* -0.75* -1.2

-1.0

-0.8

-0.6

Sh
ar

pe
 r

at
io

, p
.a

.

In this table, panel A shows the square root of the average realized (as horizon-0) and implied (for horizons
of 1 to 4 months) variance of currency portfolios, in % p.a. The former are calculated as in eq. (7), the latter –
as in eq. (9). Panel B shows the time-series averages of synthetic variance swap returns, calculated as in eq.
(10), in percent squared p.a. Panel C shows the Sharpe ratios of these payoffs, annualized. In panels B and
C the estimates with a t-statistic exceeding 2.0 in absolute value are marked with an asterisk. Observations
are daily and overlapping; t-statistics are calculated with the Newey and West (1987) adjustment with the
number of lags set to 22×horizon. The colorbar to the right maps heatmap colors to numeric values. The
sample period is from 01/2009 to 06/2018.
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Figure 5: Variance swap returns of currency and local stock market indexes
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This figure depicts average 1-month variance swap returns (bottom x- and left y-axis, in blue) and respective
Sharpe ratios (top x- and righ y-axis) for several local equity markets (on the x-axes) and corresponding
currencies (on the y-axes). Returns are in percent, calculated as in eq. (22), whereby the FX variance swap
rates are as in eq. (9), and the equity market swap rates are taken to be squared values of respective VIX
indexes (details in Section 2.2. Both returns and Sharpe ratios are annualized. The sample period is from
01/2009 to 06/2018.
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Figure 6: Forward variance claims prices: average values
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This figure shows the square root of the average τ-month forward variance prices for a number of currency
portfolios (along the y-axis) and horizons (along the x-axis). Each value is thus a one-to-one increasing
transformation of the average τ-month forward price of monthly variance. F(0) is the average realized
variance, and by definition, F(1) = IV(1). Observations are daily and overlapping; one month is taken to
be 22 days long. The sample period is from 01/2009 to 06/2018.

44



Figure 7: Rolling over forward variance claims: monthly variance
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(B): Sharpe ratios
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Panel A shows average monthly payoffs of rolling over forward monthly variance claims, and Panel B –
respective Sharpe ratios. Horizon-1 claims are equivalent to 1-month variance swaps. Values exceeding in
magnitude 2× own standard error are marked with an asterisk (*), whereby the errors are calculated with
the Newey and West (1987) adjustment (the number of lags set to 2× 22×months). The colorbar to the right
maps heatmap colors to numeric values. Observations are daily and overlapping; one month is taken to be
22 days long. The sample period is from 01/2009 to 06/2018.
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Figure 8: Rolling over forward variance claims: quarterly variance
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(B): Sharpe ratios
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Panel A shows average quarterly payoffs of rolling over forward quarterly variance claims, and Panel B –
respective Sharpe ratios. Horizon-3 claims are equivalent to 3-month variance swaps. Values exceeding in
magnitude two own standard errors are marked with an asterisk (*), whereby the errors are calculated with
the Newey and West (1987) adjustment (the number of lags set to 2× 22×months). The colorbar to the right
maps heatmap colors to numeric values. Observations are daily and overlapping; one quarter is taken to
be 66 days long. The sample period is from 01/2009 to 06/2018.
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